conclusions: first, the increments to TDF from this additional complexity of the model would be small (of the order of 0.004); second, the increments would, however, be more strongly dependent on halogen atom mass than the three genuine vibrations considered above; third, in aggregate, the additional complexities would not account for the degree of sensitivity to halogen atom mass indicated experimentally for either TIF or TDF.

For a consistent reaction coördinate motion, then, the obvious models fail to reproduce the experimental results. What of the possibility that each of the reactions actually involves a somewhat different reaction coördinate motion? If one insists upon linear or nearly linear transition states, one's freedom in calculation is limited mostly to the juggling of force constants and bond distances, differences in reaction coördinate motion being described essentially as differences in applicable values of a parameter such as the p of the BigeleisenWolfsberg treatment. Comparison of Table IV and the first column of Table III leads us to conclude that one might by this means bring the calculations for the methyl chloride and methyl bromide reactions into reasonable consonance, but TIF for the cyanization of methyl iodide is just too large to fit into such a picture. Departures from linearity in the configurations of the activated complexes result in lowering the calculated values of TIF; but, the shifts are moderate even for CN - attack at 90°, and no better correspondence between calculated and apparent experimental values of TIF can be achieved by the assumption of halogen dependence of the single ABC. The rather large scatter in the data furnishes no refuge from these conclusions.

Acknowledgments.—We are indebted to Mrs. Eula Ihnen who performed the mass spectrometric analyses. This research was supported by the U.S. Atomic Energy Commission.

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, PURDUE UNIVERSITY, LAFAYETTE, INDIANA]

The Thermodynamic Properties of High Temperature Aqueous Solutions. I. Standard Partial Molal Heat Capacities of Sodium Chloride and Barium Chloride from 0 to 100°_1}

By Cecil M. Criss² and J. W. Cobble

RECEIVED FEBRUARY 22, 1961

A sensitive submarine type solution calorimeter using electronic amplification and automatic recording has been constructed to measure heats of solution up to 100° . Nearly 300 integral heats of solution of sodium chloride and barium chloride have been determined at various concentrations from near 0 to 95°. From the extrapolated values of the heats at infinite dilution, values of $\overline{C_{p_2}}^{\circ}$ as a function of temperature have been calculated for these salts. The observed heat capacities show maxima between 50 and 70° and then decrease as the temperature is further increased.

Introduction

Within the past several years there has been an increasing interest in the thermodynamic properties of aqueous solutions at higher temperatures, both from a practical and theoretical point of view. One of the best methods of obtaining these properties at higher temperatures is to extend the known thermodynamic functions at 25° by use of partial molal heat capacities over the desired temperature range. Usually, it is the standard state functions (*i.e.*, at infinite dilution) that are desired; therefore, it is the partial molal heat capacity at infinite dilution and a function of temperature which is of real interest. Unfortunately, only a few reliable values have been reported at temperatures much above 25° .³⁻⁶ Furthermore, what values are available were obtained from extrapolations derived from specific heat measurements of concentrated solutions. The reliability of extrapolations from such concentrations to infinite dilution is subject to question. Indeed, even the

- (3) M. Eigen and E. Wicke, Z. Elektrochem., 55, 354 (1951). (4) E. Wicke, M. Eigen and Th. Ackermann, Z. physik. Chem. NF, 1. 340 (1954).
- (5) Th. Ackermann, Disc. Faraday Soc., 24, 180 (1957).
- (6) Th. Ackermann, Z. Elektrochem., 62, 411 (1958).

theoretical limiting slope for $\Phi_{\tt Cp}$ at 25° is uncertain by 25% for a 1:1 electrolyte." Gucker^8 has suggested that more reliable values of Φ_{Cp}^0 can be obtained by combining the temperature coefficients of the relative apparent molal heat contents, Φ_L , with apparent molal heat capacities of more concentrated solutions. Harned and Owen⁹ have suggested that the use of the temperature coefficient of the relative heat content can lead to better values for $\bar{C}_{p_2}^0$. Gulbransen and Robinson¹⁰ in still another method have combined the heats of dilution, $-\Phi_{\rm L}$, at two temperatures with the integral heats of solution at the same two temperatures to calculate \bar{C}_{p_2} for NaCl(aq.) at 22.5

The approach used in this investigation is a slight variation on the latter method and will hereafter be referred to as the "integral heat method." It involves only heat-of-solution measurements. The amount of heat released when a solute is dissolved in water according to the equation

$$MX(c) + aq. \longrightarrow MX(aq.)$$
 (1)

⁽¹⁾ Supported in part by a grant from the National Science Foundation.

⁽²⁾ From the Ph.D. Thesis of Cecil M. Criss, Purdue University, 1961

⁽⁷⁾ E. A. Guggenheim and J. E. Prue, Trans. Faraday Soc., 50, 710 (1954).

⁽⁸⁾ F. T. Gucker, Jr., Ann. N. Y. Acad. Sci., 51, 680 (1949).
(9) H. S. Harned and B. B. Owen, "The Physical Chemistry of Electrolytic Solutions," 3rd Ed., Reinhold Publ. Corp., New York, N. Y., 1958, p. 352.

⁽¹⁰⁾ E. A. Gulbransen and A. L. Robinson, J. Am. Chem. Soc., 56, 2637 (1934).

can be expressed by

$$\Delta H_{\rm s} = n_1 \bar{H}_1 + n_2 \bar{H}_2 - n_1 \bar{H}_1^0 - n_2 H_2 \tag{2}$$

where \bar{H}_1 and \bar{H}_2 are the partial molal heat contents of the water and solute, respectively, \bar{H}_1^0 is the heat content of pure water, H_2 is the heat content of the pure solute and n_1 and n_2 are the number of moles of water and solute, respectively. At infinite dilution

$$\Delta H_{\rm s}{}^0 = n_2 \bar{H}_2{}^0 - n_2 H_2 \tag{3}$$

Over sufficiently small temperature intervals the temperature coefficient of this expression is

$$\Delta C_{\rm p}^{0} = n_2 \bar{C}_{\rm p2}^{0} - n_2 C_{\rm p2} \tag{4}$$

where ΔC_p is the change in heat capacity of reaction 1 and C_{p2} is the heat capacity of the pure solute. Thus the problem is reduced to finding an accurate value for ΔH_s^0 at two temperatures.

Experimental

Apparatus.—The submarine calorimeter (hereafter referred to as laboratory calorimeter CS-1) was a 425 cc. glass dewar-type flask fitted with a standard taper joint and an evacuated stopper and contained a platinum resistance thermometer for temperature measurements. The glass stopper had three 23 cm. exit tubes, two of which were made from precision tubing from about two cm. above the top of the stopper.

One of these tubes contained the stirrer, the upper portion of which was made from a matching piece of precision bore tubing. The stirrer was hollow and contained a heating element in order to bring the calorimeter to the desired operating temperature. Two insulated metal slip rings were attached to the top of the stirrer and connected to the heating element so that the calorimeter could be simultaneously stirred and heated. The stirrer was driven by a synchronous motor at approximately 600 r.p.m.

The other precision bore tube contained the combined calibration heater and sample holder. The upper portion of this tube was also made from a matching precision bore tube. The sample bulbs were connected by rubber tubing to the lower end of the sample holder-heater. The bulbs could be broken by a vertical movement of the rod which caused the bulbs to be smashed on a small anvil which was fused to the bottom of the calorimeter.

The heating element of the calibration heater was made by winding about 80 inches of No. 36 manganin wire noninductively around a six mm. Pyrex tube. This then was painted with "Glyptal" and baked for several hours. Four copper lead wires were attached: two No. 30 wires to carry the current and two No. 40 wires to measure the potential across the heater. The space inside the tubing was filled with silicone oil to conduct heat from the heating elements to the surroundings for both this heater and the rough heater previously mentioned.

The remaining tube in the stopper contained the platinum resistance thermometer which was adjusted so as not to touch the walls of the exit tube. The calorimeter was placed about 16 cm. below the surface of a bath thermostated to at least $\pm 0.002^{\circ}$. The modulus of the calorimeter under these conditions was about 1×10^{-3} cal. min.⁻¹ deg.⁻¹.

these conditions was about 1×10^{-5} cal. mm.⁻¹ deg.⁻¹. The resistance thermometer was connected to a standard Mueller bridge. This bridge was thermally and electrically shielded by specially constructed shielding and was internally calibrated. Corrections were applied to the resistances when necessary. In preliminary experiments, the output of the bridge was connected to a Leeds and Northrup, moving-coil, reflecting-type galvanometer which had an optical arrangement that gave a sensitivity of $1 \times 10^{-4.9}$. During the course of these measurements it was decided to use a d.e. linear breaker-type amplifier and recorder in place of the galvanometer. It was operated close to full gain and the output voltage attenuated by a voltage divider. A portion of this voltage was used to drive a four mv. recorder. The over-all gain was such that a 0.35 μ v. signal to the amplifier gave a full scale deflection of the recorder pen, resulting in a temperature sensitivity of $\sim 2 \times 10^{-6}$ °C.

The power source for the calibration heater was a commercially available coulometric constant current source, accurate to better than $\pm 0.1\%$. A mechanical timer built into the instrument provided time measurements to ± 0.1 second. The two No. 30 wires from the calibration heater were connected directly to the output of the current source and the two No. 40 wires from the heater were connected to a volt box so that periodic checks on the voltage drop across the heater could be made. All voltages were measured with a Leeds and Northrup type K-3 universal potentiometer. The current source was periodically calibrated by means of a 10.000 ohm standard resistor and potentiometer.

Corrections were made to the heat output of the heater caused in the slight difference in the resistance of the manganin wire at various calorimeter operating temperatures. Corrections were also applied for heat generated in the leads and the heat leak from the leads of the heater. The largest of these corrections was in the order of 0.2%.

Materials.—All water used in the measurements was prepared from ion-exchange repurified distilled water. The specific resistance of the water varied from 2.7 to 18.0 megohm-cm.

The BaCl₂ used in all measurements was J. T. Baker analyzed reagent, dihydrate. The specifications indicated that the greatest impurity did not exceed 0.03%, making it unnecessary for further purification, except for the removal of water.

Samples of NaCl were also J. T. Baker analyzed reagent and were used without further purification. Specifications indicated that the greatest impurity was 0.004% (including potassium).

All salt samples were dried over 400° , weighed into sample bulbs and then returned to the 400° oven for at least 8 hr. They were then removed, cooled in a desiccator and sealed under vacuum immediately. The stock supply was kept in the furnace and was removed only when weighing samples.

A drop of phenolphthalein on the salts indicated no apparent hydrolysis for NaCl. However, a slight pink coloration was observed with the BaCl₂, indicating a slight amount of hydrolysis, but it has been shown by using synthetic samples containing Ba(OH)₂ to be less than 0.1%.

Experimental Procedure.—Very thin-walled sample bulbs having a diameter of about 8 mm. and a stem about 2.5 cm. long were made from 7 mm. Pyrex tubing. The stem had a narrow neck near the base of the bulb. These bulbs were filled as described above and sealed under vacuum by melting the glass around the neck of the bulb with a very thin flame, with due care to avoid excessive heating of the sample. For determinations above 25°, water was placed in the

For determinations above 25° , water was placed in the calorimeter at room temperature and then heated to the desired operating temperature by the rough heater and permitted to come to a uniform temperature a few hundredths of a degree below the equilibrium temperature. For temperatures below 25° , water was placed in the calorimeter near 0° and heated to operating temperature. For the lowest temperature, 0.02° , the water in the calorimeter was cooled further by inserting a long "U" shaped tube in the opening for the sample holder-heater through which Dry Ice cooled acetone was passed. When the calorimeter water was very close to 0° , the tube was removed and the sample holder-heater inserted in its proper place. The system was then permitted to remain for several hours until a uniform temperature was established.

The bridge was kept as close to balance as the last decade would permit, using the recorder (or galvanometer) to interpolate between unit resistances of the last decade. When a linear time-temperature drift line was observed, it was assumed that a uniform temperature gradient had been established and a determination was started. An electrical calibration generally preceded and followed each determination, except at the lowest temperature. At this temperature the chemical determination was made first and was then followed by two electrical calibrations. When heat was introduced into the calorimeter (either electrical or chemical), the bridge was balanced again to keep the recorder pen from going off scale. A "best" straight line was drawn through the linear portion of each of the time-temperature curves and extrapo-

A "best" straight line was drawn through the linear portion of each of the time-temperature curves and extrapolated to the time at which either the sample bulb was broken or the calibration made. The differences between these lines were always determined at the six-tenths rise time¹¹ and compared with a standard deflection obtained

⁽¹¹⁾ H. C. Dickinson, U. S. Bur, Standards Bull., 11, 189 (1914).

by moving the last decade of the bridge one unit, *i.e.*, a value of 0.0001 ohm. This standard deflection was an average of several values obtained before, during and after each run.

The amount of heat released¹² when the sample bulb was broken was divided by the number of moles of the sample dissolved to determine the integral heat of solution per mole, ΔH_s , for that particular concentration. In general, two or more determinations were made for a particular concentration and the results were averaged.

Calculations and Results

A procedure for extrapolating heat of solution data to infinite dilution has been proposed.⁷ The relative apparent molal heat content, Φ_L , can be expressed by an extension of the Debye-Hückel expression

$$\Phi_{\rm L} = \frac{\nu}{2} \,\delta_{\rm H} \, |Z_+ Z_-| \, I^{1/2} \left[(1 + I^{1/2})^{-1} - \frac{\sigma(I^{1/2})}{3} \right] - 2.303 R T^2 \, \frac{{\rm d}B}{{\rm d}T} \, m\nu_+ \, \nu_- \quad (5)$$

where $\delta_{\rm H}$ is the theoretical limiting slope, $\nu = \nu_+ + \nu_-$, ν_+ and ν_- are the number of positive and negative ions produced by dissociation of one molecule of electrolyte, Z_+ and Z_- are the charges on these respective ions, I is the ionic strength, $\sigma(I^{1/2})$ is a special function¹³ defined by

$$\sigma(I^{1/2}) = \frac{3}{I^{1/2}} \left[1 + I^{1/2} - (1 + I^{1/2})^{-1} - 2\ln\left(1 + I^{1/2}\right) \right]$$
(6)

and B is a constant for the specific electrolyte. If the first term on the right side of equation 5 is subtracted from both sides and the left side plotted against molality, a straight line with the slope $-2.303RT^2$ $(dB/dT)\nu_+\nu_-$ should be obtained. For the purpose of extrapolating heats of solution to infinite dilution, this equation can be written as

$$\rho = \Delta H_{\rm s}^0 - 2.303 R T^2 \frac{{\rm d}B}{{\rm d}T} \nu_+ \nu_- m \qquad (7)$$

where ΔH_{s^0} is the integral heat of solution at infinite dilution

$$\rho \equiv \Delta H_{\rm s} - \frac{\nu}{2} |Z_+ Z_-| \,\delta_{\rm H} \, I^{1/2} \alpha \tag{8}$$

and

$$\alpha \equiv \left[(1 + I^{1/2})^{-1} - \frac{\sigma(I^{1/2})}{3} \right]$$
(9)

All the data for both BaCl₂ and NaCl were extrapolated to infinite dilution by plotting ρ as a function of m.

It is believed that this method of extrapolation to infinite dilution is superior to the use of \sqrt{m} plots. This is largely true because the extrapolation using a linear *m* scale can be made from more concentrated solutions, and the distance over which the extrapolation must be made is smaller than with a \sqrt{m} scale.

The extrapolations of ρ to infinite dilution were also carried out such that both $d\rho/dm$ and the temperature coefficients of ΔH_{s^0} were a smooth function of temperature. In some cases this did not represent the best line that could be drawn through the

 $(12)\,$ Except at the highest temperature, there was no noticeable heat of bulb breaking.

(13) Tables of this function are listed in Harned and Owen, ref. 9, p. 176.

centers of the experimental points, but in all cases the extrapolations were consistent with the average errors involved in the heats. It should be noted that the extrapolations are also in agreement with the known heats of dilution at some temperatures.^{10,14}

The average values of ΔH_{\bullet} at various concentrations and temperatures are listed in Tables I and II. The first column gives the number of individual determinations that are involved in determining an average value for the listed heats. Columns two and three list the average molality and \sqrt{m} . Column five gives the theoretical values that are subtracted from the observed heats in column four to obtain ρ values which then are listed in column six. The extrapolated value of the integral heat of solution at infinite dilution, $\Delta H_{\rm s}^0$, for each temperature is listed with the data for that temperature.

It is of interest to note that the present integral heats of solution of NaCl at infinite dilution are in agreement, within experimental error, with most of the previously reported values. The heats of dilution of NaCl at 20 and 25° reported by Gulbransen and Robinson¹⁰ combine with the heats of solution at 20 and 25° reported by Cohen and Kooy¹⁵ to give 1,080 and 915 cal./mole for the integral heat of solution at infinite dilution.¹⁶ A similar treatment of the data of Lipsett, Johnson and Maass¹⁷ gives 1,072 and 918 cal./mole for the same quantities at 20 and 25°.¹⁸ Likewise, a similar treatment of the data of Wüst and Lange¹⁹ yields 926 cal./mole at 25°.

The integral heat of solution at infinite dilution and at 25° for BaCl₂ was found to be more negative than the commonly accepted value²⁰ of 3,160 cal./ mole. However, when a BaCl₂ sample was permitted to be in contact with the laboratory air for a few minutes, ΔH_s^0 changed to 3,150 ± 10 cal./ mole, which suggests that the values reported in this research are perhaps to be preferred.

Tables III and IV summarize the values of $\overline{C}_{p_{0_2}}^{0_2}$ evaluated from equation 4. The heat capacities for the anhydrous salts, C_{p_2} , are those reported by Kelley.^{21,22}

Although the values of $\bar{C}_{p_2}^0$ obtained by the integral heat method as used in this research repre-

(14) See Harned and Owen, ref. 9, p. 707.

(15) E. Cohen and J. Kooy, Z. physik. Chem. (Leipzig), 139A, 273 (1928).

(16) These values are the same, within the experimental error, as those calculated by Gulbransen and Robinson¹⁰ from the same data.

(17) S. G. Lipsett, F. M. G. Johnson and O. Maass, J. Am. Chem. Soc., 49, 1940 (1927).

(18) The dilution data of Gulbransen and Robinson¹⁰ and those derived from the heat of solution data of Lipsett, Johnson and Maass¹⁷ do not agree. Therefore, the dilution data of Gulbransen and Robinson were applied to the heat of solution of the most concentrated solution for which the dilution data were valid (*i.e.*, at $\sqrt{m} = 0.844$).

(19) J. Wüst and E. Lange, Z. physik. Chem., 116, 161 (1925).

(20) F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine and I. Jaffe, "Selected Values of Chemical Thermodynamic Properties," Circular 500, National Bureau of Standards, 1952.

(21) K. K. Kelley, "Contributions to the Data on Theoretical Metallurgy. XI, Entropies of Inorganic Substances. Revision (1948) of Data and Methods of Calculation," U. S. Bureau of Mines, Bulletin 477, 1950.

(22) K. K. Kelley, "Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat Capacity, and Entropy Data for the Elements and Inorganic Compounds," U. S. Bureau of Mines, Bulletin 584, 1960.

	TABLE I					TABLE I (continued)					
Тне	INTEGRAL]		SOLUTION AS	ND P	VALUES OF	No. of detns.	$m imes 10^{s} \ (moles/kg. H_{2}O)^{a}$	\sqrt{m}	∆ <i>H</i> s (cal./mole)	$\frac{-\delta_{\mathrm{H}}}{I^{1/2}\alpha}$ (cal.)	(cal./mole)
No. of	$m \times 10^{3}$ (moles/kg.		ΔHs	$-\delta_{\rm H}$ - $I^{1/2}\alpha$	â			5	4.83°		
detns.	$(\mathrm{Hiorcs})^{a}$	\sqrt{m}	(cal./mole)	(cal.)	(cal./mole)	2	3.68	0.0607	124 ± 12	41	83 ± 12
		0	.02°			2	9.95	.0998	146 ± 5	65	81 ± 5
1	3.43	0.0586	1897	18	1879	2	14.25	.1194	154 ± 5	77	77 ± 5
3	9.24	.0961	1911 ± 21	28	1883 ± 21	2	20.62	.1436	167 ± 11	92	75 ± 11
1	13.27	.1152	1933	33	1900			4	$\Delta H_{\rm s^0} = 80 \ \pm$	2 cal./	/mole
3	19.16	.1384	1936 ± 14	39	1897 ± 14			G	4.86°		
			$s^0 = 1905 \pm$			0	0.45				000
			s - 1000 -	0 cai.,	mole	2	3.67		-155 ± 5	47	-202 ± 5
		5	° 00.			2	9.90	.0995	-138 ± 5	74	-212 ± 5
4	3.43	0.0586	1705 ± 15	19	1686 ± 15	2	14.04		-121 ± 4		-209 ± 4
3	9.25	.0962	1665 ± 4	30	1635 ± 4	1	20.49	.1431	-108		-212
4	13.30	. 1153	1689 ± 5	36	1653 ± 5			ΔH_{s}	$a^{0} = -200 \pm$	2 cal./	mole
3	19.16	. 1384	1674 ± 6	42	1632 ± 6			7	5.01°		
		ΛH_{*}^{0}	$= 1658 \pm 1$	1 cal		3	4.20		-433 ± 15	57	-490 ± 15
				I Clar,	more	2	9.91	.0996	-405 ± 2	85	-490 ± 2
		9	.99°			2	14.41	.1200	-391 ± 2	101	-492 ± 2
3	9.24	0.0961	1462 ± 10	33	1429 ± 10	3	20.30		-378 ± 23		
2	19.14	. 1383	1475 ± 2	46	1429 ± 2	.,	20.00		$a^{0} = -487 \pm$		
		$\Delta H_{ m c}$	$s^0 = 1440 \pm$	5 cal.	/mole					2 car./	mole
								8	34.98°		
		15	5.00°			2	4.19	0.0648	-699 ± 13	65	-764 ± 13
1	9.24	0.0961	1280	35	1245	2	9.93	.0996	-661 ± 2	97	-758 ± 2
1	9.70	.0985	1282	36	1246	2	14.39	.1200	-646 ± 6	115	-761 ± 6
1	19.16	. 1384	1288	49	1239	2	20.33	.1425	-633 ± 3	135	-768 ± 3
1	20.09	.1418	1281	51	1230			$\Delta H_{ extsf{s}}$	$0 = -770 \pm$	2 cal./	mole
	$\Delta H_{*}^{0} = 1245 \pm 2 \text{ cal./mole}$							o	5.18°		
		10	0.058			1	1.00			- 1	4 4 4 12
			9.97°			1	4.26	0.0652			-1113
2	9.69	0.0984	1098 ± 9	39	1059 ± 9	2	9.94	.0997			-1083 ± 3
2	20.06	. 1416	1116 ± 11	55	1061 ± 11	$\frac{1}{2}$	14.41	.1200 .1427	-957		1088
		ΔE	$I_{\rm s^0} = 1071 \ \pm$	8 cal.	/mole	4	20.35		-931 ± 3		-1085 ± 3
		2i	5.00°			. *			85 ± 8 cal./m		
3	1.45	0.0380	952 ± 33	17	935 ± 33				lie concentrati xactly reprodi		
3	2.88	.0537	931 ± 18	$\frac{1}{24}$	907 ± 18		listed is an		actly reprod	uccu,	the concen
2	5.31	.0729	941 ± 15	32	909 ± 15						
2	6.39	.0799	945 ± 47	37	908 ± 47				over a giv		
2	8.98	.0947	959 ± 2	41	918 ± 2				e intervals		
2	9.93	. 0996	937 ± 6	43	894 ± 6				nificant diffe	erence	between
1	10.66	. 1032	934	44	890		$\frac{1}{2}/\mathrm{d}T$ and $\frac{1}{2}$		Δ1. standard par	+int ,	notal heat
2	20.56	.1434	965 ± 5	59	906 ± 5	gr T Doroo	ity of p f	ws the s	of temperat	ILIAL I	The solid
		ΔI	$U_{a0} = 914 \pm$	5 cal.	/mole	circle	s are those	obtained	l in this inve	stigat	tion The
									(.) is the val		
		34	4.96°						by the extra		
1	0.899	0.0300	656	16	640				asurements of		
2	1.47	. 0383	595 ± 13	20	575 ± 13	soluti	ous of F	Randall	and Rossin	i. ²³	The open
$\underline{2}$	2.44	.0494	636 ± 27	26	610 ± 27	trians	rle was ob	tained b	y combining	the	previously
2	3.82	.0618	658 ± 9	32	626 ± 9				dilution an		
1	5.37	.0733	653	37	616				°. The qu		
1	6.87	.0829	654	42	612	culate	ed in the	same m	lanner as th	iose d	of this in-
2	9.74	.0987	666 ± 3	49	617 ± 3	vestig	gation an	d is –	-19.8 cal.	deg	'mole ⁻¹ . ²⁴
1	11.62	. 1078	676 690	53	623 699	(23)	M. Randall	and F. D.	Rossini, J. Am.	Chem.	Soc., 51, 323
1	14.32	.1197 1435	680	58 68	622 609	(1929),					
1	1 20.58 .1435 677 68 609								s been performe		
	$\Delta H_{s^0} = 615 \pm 6 \text{ cal./mole}$								the same two in for Ĉ _{p2} º. It li		
	45.00°					reprodu	ice their calci	ilations. F	urthermore, they	7 comp	are this value,
2	3.68	0.0607	377 ± 7	36	341 ± 7				of Randall and R		
<u></u>	9.91	.0996	393 ± 2	57	336 ± 2				port $C_{p_2}^0$ only at did comparison s		
2	14.29	.1195	408 ± 2	67	341 ± 2				every 2.5 degree		
$\overline{2}$	20.56	. 1434	420 ± 2	80	340 ± 2		temperature r		Dama t t	. CI.	Sec 40 00
		ΔI	$H_{s^0} = 340 \pm$	2 cal.		(25) (1927).		and w.D.	Ramage, J. Am	i. Unem	. 201., 47, 93
						(,);					

TABLE II					TABLE II (continued)						
The Average Heat of Solution and ρ Values of Barium Chloride					No. of detns.	$m^* \times 10^3$ (moles/kg. $H_2O)^a$	\sqrt{m}	(cal./mole)	3δ _H I ^{1/2} α (cal.)	—ρ (cal./mole)	
No. of	$m \times 10^3$ (moles/kg.		— Δ <i>H</i> s —	3δHI1/2			0		4.88°	1	aroa + 8
detns.	H 2O) ^a	\sqrt{m}	(cal./mole)	(cal.)	(cal./mole)	2	1.50	0.0388	6351 ± 7	155	6506 ± 7
		(0.02°			2	4.50	.0671	6233 ± 18	257	6490 ± 18
3	1.40	0.0374	573 ± 46	57	630 ± 46	3	7.03	.0838	6195 ± 39	318	6513 ± 39
3	4.19	.0647	487 ± 14	96	583 ± 14	1	8.98	.0948	6165	353	6518
2	6.52	.0807	494 ± 5	118	612 ± 5	3	10.00	. 1000	6125 ± 25	371	6496 ± 25
3	9.31	.0965	445 ± 7	138	583 ± 7			ΔH_{s}^{0}	$= -6510 \pm$	6 c al./	mole
		$\Delta H_{ m s}{}^0$	$= -590 \pm 3$	13 cal.,	/mole			7	5.01°		
			5.00°			4	1.02	0.0319	7167 ± 33	147	7314 ± 33
3	1.40	0.0374	1143 ± 4	62	1205 ± 4	1	2.50	.0500	7087	225	7312
3	4.19	.0647	1103 ± 20	104	1207 ± 20	3	4.01	.0633	7072 ± 16	278	7350 ± 16
3	6.53	.0808	1066 ± 7	128	1194 ± 7	1	7.01	. 0838	6930	362	7292
2	9.31	.0965	1052 ± 7	150	1202 ± 7	3	8.50	.0922	6930 ± 25	394	7324 ± 25
		ΔH_{s^0}	$= -1195 \pm$	4 cal.,	/mole			ΔH_{s}^{0}	$= -7330 \pm$	11 cal.	/mole
		1	5.00°					8	4.99°		
-	1 40			70	2202	2	1.01	0.0318	$7976~\pm~73$	167	8143 ± 73
1	1.40	0.0375	2190	73	2263	2	2.50	.0500	7896 ± 8	256	8152 ± 8
1	4.40	.0663	2148	125	2273	3	4.00	. 0633	7844 ± 37	317	8161 ± 37
1	6.53	.0808	2123	150	2273	1	4.41	.0664	7780	331	8111
1	9.78	.0988	2108	180	2288	2	5.50	.0742	$7744~\pm~34$	366	8110 ± 34
		ΔH_{s}^{0}	$= -2265 \pm$	2 cal.,	/mole	2	7.00	.0837	7744 ± 10	413	8157 ± 10
		2	5.00°			1	7.67	.0876	7660	429	8089
5	1.84	0.0429	3109 ± 20	97	3206 ± 20	1	8.51	.0923	7637	448	8085
5	2.60	.0509	3077 ± 18	114	3191 ± 18	1	10.13	.1006	7586	483	8069
$\frac{1}{2}$	3.61	.0601	3125 ± 11	133	3258 ± 11			ΔH_{s}^{0}	$= -8155 \pm$	8 cal./	mole
$\frac{2}{6}$	4.39	.0662	3068 ± 10	$100 \\ 140$	3208 ± 10 3208 ± 10					,	
2	5.38	.0734	3067 ± 5	160	3200 ± 10 3227 ± 5				5.17°		
2	5.92	.0770	3085 ± 12	167	3252 ± 12	2	0.901	0.0300	8864 ± 35	179	9043 ± 35
3	6.50	.0806	3064 ± 7	174	3238 ± 7	3	1.35	.0368	8865 ± 6	217	9082 ± 6
1	7.20	.0849	3070	184	3254	2	1.83	.0427	8771 ± 33	250	9021 ± 33
1	8.74	.0935	3027	199	3226	2	2.93	.0541	8735 ± 35	312	9047 ± 35
3	10.00	.1000	3037 ± 19	212	3249 ± 19	2	4.82	.0694	8565 ± 5	393	8958 ± 5
		ΔH_{s}^{0}	$= -3230 \pm$	7 cal.	/mole	1 1	$\begin{array}{c} 6.52\\ 12 & 53 \end{array}$.0808 .1119	$8495 \\ 8284$	$\begin{array}{c} 449 \\ 604 \end{array}$	8944 8888
			5.00°			1	12 00		$= -9045 \pm$		
0	0 00			00	4100	a In	those case		he concentra		
6	0.589	0.0243	$4040 \pm 55 \\ 4009 \pm 57$	66	4106 ± 55				xactly reprod		
2	1.36 2.33	.0368 .0483	4009 ± 57 3948 ± 30	98 196	4107 ± 57	tratior	ı listed is an	average.			
4 1	$\frac{2.35}{3.92}$.0485	3948 ± 30 3974	$126 \\ 160$	$4074 \pm 30 \\4134$						
-								Ta	ble III		
5 1	4.52	.0672 .0836	$3926 \pm 24 \\ 3890$	$\frac{171}{210}$	$4097 \pm 24 \\4100$	Heat	CAPACITY	DATA FO	r Crystalli	NE ANI	D AQUEOUS
2	10.00	. 1000	3880 ± 15	246	4100 ± 15			SODIUM	CHLORIDE		
2	10.00		$= -4090 \pm$				tar.	ΔC_{p}^{0}	C_{p_2}		$ar{C}_{ m pq}$ °
		$\Delta I I_{B}$	4090 ±	7 Cal.,	mole		2.51	-50.4	12.1		-38.3
		4	5.01°				7.50	-43.7	12.1		-31.6
6	0.575	0.0240	4900 ± 34	74	4974 ± 34		2.50	-38.9	12.1		-26.8
3	1.50	.0387	4813 ± 44	118	4931 ± 44		7.49	-35.0	12.1		-22.9
4	2.26	.0475	4740 ± 37	144	4884 ± 37		2.49	-31.2	12.1		- 19.1
7	4.44	.0666	$4703~\pm~36$	195	4898 ± 36		9.98	-30.0	12.2		-17.8
3	7.00	.0837	$4697~\pm~28$	242	4939 ± 28		9.98	-27.4	12.2		-15.2
2	10.02		4701 ± 7	284	4985 ± 7		9.92	-26.5	12.3		-14.2
			$= -4910 \pm 3$				9.85	-27.9	12.3		-15.6
							9.94	-28.3	12.3		-16.0
		5	54.83°				0.00	-28.4	12.4		-16.0
2	0.579	0.0241	$5586~\pm~60$	83	5669 ± 60	90	0.08	-30.9	12.4		- 18.5
2	1.50	.0387	$5584~\pm~9$	135	5719 ± 9	This	is in exce	llent agr	eement wit	h the	smoothed
4	4.46	. 0668	$5471~\pm~13$	224	5695 ± 13				g. ⁻¹ mole ⁻		
2	7.01	.0837	5445 ± 39	276	5721 ± 39	Fig. 1	. The di	screpanc	y in the sm	ioothe	d value at
1	8.10	.0900	5435	305	5740	25° a	nd that o	f Gugger	heim and F	rue ⁷ p	robably is
2	10.01	. 1000	5394 ± 41	325	5719 ± 41	due t	o the extr	apolation	n of the spe		
		ΔH_{s^0}	$= -5705 \pm$	9 cal.,	/mole	conce	ntrated so	lutions.			

Temt

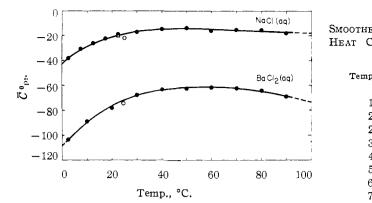


Fig. 1.-Standard partial molal heat capacities of NaCl-(aq.) and BaCl₂(aq.) from 0 to 100°. The solid circles are the values obtained in this investigation. The open circle for NaCl is from Guggenheim and Prue7 and the triangle was calculated from heat of solution and dilution data.^{10,15,17} The open circle for BaCl₂ was obtained from White.²⁶

TABLE IV

HEAT CAPACITY	DATA FOR	CRYSTALLINE	and Aqueous
t_{av} .	ΔC_{p}	C_{p2}	\overline{C}_{ps}^{0}
2.51	-121.5	17.9	-103.6

	10110	11.0	10010
10.00	-107.0	17.9	-89.1
20.00	-96.5	18.0	-78.5
30.00	-86.1	18.0	-68.1
40.00	-81.8	18.0	-63.8
49.92	-81.0	18.1	-62.9
59.86	-80.1	18.1	-62.0
69.95	-80.9	18.2	-62.7
80.01	-82.8	18.2	-64.6
90.09	-87.3	18.2	-69.1

Figure 1 also shows the corresponding curve for $BaCl_2(aq.)$. The open circle is that from direct specific heat measurements of White.26 Specific heats of BaCl₂ solutions also have been reported by Urban²⁷ at various temperatures, but the accuracy of this work is questionable for the purpose of obtaining $\overline{C}_{p_2}^0$. Smoothed values of $\overline{C}_{p_2}^0$ at even temperatures are listed for both salts in Table V.

(26) C. M. White, J; Am; Chem; Soc; 58, 1615 (1936).

(27) F. Urban, J. Phys. Chem., 36, 1108 (1932).

ED	VALUES	OF	THE	St.	ANDARD	$\mathbf{P}\mathbf{A}$	RTIAL	Molal
CAP	ACITIES	OF	Sodit	JM	Chlori	DE	AND	Barium
			Chlo	RID	Е			
p., °	c.		NaCl(aq.)	$-\overline{C}p_{a^0}$		BaCl ₁ (aq.)
				-				

TABLE V

Tombi, Ot	Timer(adi)	Duo:(uq.)
0 ª	40.5	110
10	2 9.0	90.0
2 0	20.9	77.5
25	18.9	72.6
30	17.2	68.9
40	15.3	64.0
50	14.6	62.1
60	15.2	61.7
70	15.8	62.7
80	16.5	65.2
90	17.2	68.5
100^{a}	18.0	72.5

· Extrapolated values.

The partial molal specific heats of both of these salts reach a maximum between 50 and 70° and then decrease as the temperature is increased further. This is the same general trend that previous investigators³⁻⁶ have found for NaCl and other electrolytes in more concentrated solutions. Since the specific heats of the solid salts change very little over the temperature range involved, it can be seen that ΔC_{p}^{0} varies with temperature in about the same way as $\bar{C}_{p_1}^0$. There has been considerable interest^{28,29} in the variation of $\Delta C_{\rm p}^0$ for various equilibrium processes. Unfortunately, equilibrium constants are not known well enough as a function of temperature to determine the exact temperature variation of $\Delta C_{\mathbf{p}}^{0}$. This investigation shows that $\Delta C_{\rm p}^0$ for solubility equilibria is a complex function of the temperature.

It is apparent that the present data do not lend support to the proposed⁷ method of extrapolation of heat capacity data to infinite dilution. Accordingly, some readjustment of reported values of $\bar{C}_{p_1}^{0}$ in the literature is indicated. This problem will be the subject of a future communication.

Acknowledgment.—The authors are indebted to Professor Leo Brewer for helpful discussions on the research.

(28) Harned and Owen, ref. 9, p. 643 and 661.

(29) T. F. Young, "Abstracts of Papers," American Chemical Society, 135th Meeting, Boston, Mass., April, 1959, p. 14-R.